
 

Agreement: INEA/CEF/ICT/A2020/2373580 Action: 2020-IT-IA-0234   

 

 

 

 

 

 

 

Mx – Title 

 

Deliverable Lead CMCC 

Deliverable due date 2023/03/31 

Status FINAL 

Version V1.0 

Project SEBASTIEN 

 

  

     



 

2 
  

 

 

 

DOCUMENT INFORMATION 

 

Title 
Deliverable n. 3.1 - Report on HIGHLANDER data 

platform extension implementing SEBASTIEN data 

lake 

Agreement INEA/CEF/ICT/A2020/2373580 

Action 2020-IT-IA-0234 

Creator CMCC 

Deliverable Description 
Report on HIGHLANDER data platform extension 

implementing SEBASTIEN data lake 

Contributors 
Marco Mancini (CMCC), Valentina Scardigno 

(CMCC), Giuseppe Trotta (CINECA), Francesco Renzi 

(Nature4.0), Giovanni Vignali (UNITUS) 

Requested deadline M15 

Reviewer 
Alfredo Reder (CMCC), Federica Gabbianelli 

(UNITUS) 

 

  



 

3 
  

Index 

 

1. Introduction 5 

2. SEBASTIEN Architecture 6 

3. Data Storage 7 

4. Data Source Connectors 8 

4.1. Copernicus C3S Connector 10 

4.2. CMCC DDS Connector 10 

4.3. Highlander Connector 11 

4.4. Copernicus Open Access Hub Connector 13 

4.5. MISTRAL Connector 13 

4.6. WEkEO Connector 15 

4.7. IoT System Connector 17 

4.8. LEO Portal Connector 19 

5. Backend 20 

6. Catalog 22 

6.1. MetaDB 23 

6.2. API 24 

7. Conclusions 25 

8. References 26 

 

 

 

 

 

 

 

 



 

4 
  

1. Introduction 
The goal of the document is to provide the specifications of the SEBASTIEN Data Lake (and its 

extension to the HIGHLANDER Data Platform) that allows the integration and coordination of 

different data sources, from the Copernicus Services and DIASs to OpenData Portal for livestock and 

environmental information, and IoT Systems for monitoring animal welfare, to provide to 

SEBASTIEN Services and Data Portal (see Deliverable 6.1) a unified access to the different datasets 

identified in the Deliverable D2.2 - “List of suitable data sources and of newly acquired data”.  

The Data Lake design and specifications are defined to facilitate the access and processing of huge 

volumes of data coming from heterogeneous data sources, overcoming data access and 

interoperability issues without requiring prior knowledge about data structures, file format and 

backends of each data source that is integrated. In particular, the design and specifications address 

the following functional requirements: decouple information from the data sources, provide generic 

data structures to perform analysis, avoid duplication of datasets provided by external data sources, 

and provide a unified Application Programming Interface (API) to access, process and store datasets 

coming from heterogeneous data sources and multi-thematic portals. 

The document is structured as follows. Section 2 will introduce the overall SEBASTIEN Platform 

Architecture and gives an overview of the Data Lake architecture. In the subsequent sections 3,4,5 

and 6 the design and specifications of the different components of the Data Lake are reported. 

Finally, the last section will present the conclusions. 
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2. SEBASTIEN Architecture 
This Section introduces the different components of the SEBASTIEN Platform Architecture, 

particularly the Data Lake specifications that extend the HIGHLANDER Data platform.  

Figure 1: SEBASTIEN Platform Architecture 

Figure 1 shows the SEBASTIEN Platform Architecture. The Data Lake is the component that provides 

the SEBASTIEN Services and Data Portal with a unified way to access the datasets from different and 

heterogeneous data sources (e.g., Copernicus Services and DIASs, Open Data Portal for livestock 

information, IoT systems for monitoring animal welfare). 

The design and specifications of the Data Lake have been carried out to meet the following 

requirements: decouple information from the data sources, provide generic data structures to 

perform analysis, avoid duplication of datasets provided by external data sources and provide a 

unified way to access, process and store all datasets. SEBASTIEN Services and Data Portal can access 

the datasets integrated into the Data Lake through the Data Access Layer, whose design and 

specifications will be described in Milestone 6. 
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The main components of the Data Lake are the following: 

❖ Backend is responsible for managing data requests from the SEBASTIEN clients (Services and 

Data Portal) through the Data Access Layer. 

❖ Catalog is responsible for collecting all the information related to the data source connection 

and access methods, provided datasets and related metadata (such as dataset identifier and 

parameters to retrieve data). 

❖ Connectors are a set of custom adapters the Backend uses to perform a retrieve query to the 

right data source when data is requested from the Data Access Layer. 

❖ Data Storage is in charge of storing the products developed in SEBASTIEN (indicators and 

real-time data from IoT sensors) and caching the data of the retrieved requests related to 

the data sources.  

The following sections describe the main elements that constitute the SEBASTIEN Data Lake 

architecture. 

3. Data Storage 
The Data Storage is responsible for temporarily or permanently storing data from the different data 

sources reported in Section 4. In particular, the Data Storage will be used for storing the products 

developed in SEBASTIEN (indicators and real-time data from IoT Systems for monitoring animal 

welfare) and for caching data related to the dataset queries from the external data sources such as 

Copernicus Services and DIASs. 

It will be implemented using different technologies according to the data type that has to be stored. 

In particular, a High Performance Object Storage based on MinIO [1] will be used for storing files in 

different formats (e.g. netCDF, csv, zip, …) related to the SEBASTIEN indicators and for caching the 

results of data queries associated with the external data sources, and a time-series DB TimescaleDB 

[2] for the ingestion and storage of IoT real-time data related to the monitoring of animal welfare 

produced in SEBASTIEN. 

MinIO is an open-source distributed Object Storage released under Apache License v2.0. It is a high-

performance cloud-native software designed for large-scale private cloud infrastructure. MinIO 

aggregates persistent volumes into scalable distributed Object Storage by exposing them using 

Amazon S3 REST APIs. MinIO uses buckets (as in AWS S3 service) to organize objects (i.e. files), 

where a bucket is similar to a folder or directory in a filesystem and can hold an arbitrary number 

of objects, where each object size can range from a few KBs to a maximum of 5TB.  

TimescaleDB is an open-source database packaged as a PostgreSQL extension for storing time-series 

data. The extension model allows the database to take advantage of many of the attributes of 

PostgreSQL such as reliability, security, and connectivity, to a wide range of third-party tools. At the 

same time, TimescaleDB leverages the high degree of customization available to extensions by 

adding hooks deep into PostgreSQL’s query planner, data model, and execution engine. 
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TimescaleDB enables both high ingest rates and real-time analysis queries. It scales by automatically 

partitioning Hypertable (a single continuous table) into two-dimensional (time and space) proper-

sized chunks. Inserts to recent time intervals can be parallelized by placing chunks across clusters or 

disks based on a specified partition key. Complex queries can be optimized by leveraging the 

metadata of each chunk. 

4. Data Source Connectors 
To integrate heterogeneous data sources (i.e. external data portals and services, such as Copernicus 

Services and DIASs, files stored in Object Storages, and time series from Databases), specifically 

designed connectors will be devised to access and retrieve data. Multiple techniques and 

optimizations will be used in the connectors, such as caching, multi-dimensional subsetting on the 

data source side and efficient in-memory access.  

In the following table, we report for each data source the datasets available, the related 

technologies to build the connector and the format of the retrieved result. 

Table 1: Data Sources Connectors  

Data Source Available Datasets Connector 

Technologies 

Data Format 

Copernicus C3S - E-OBS Gridded Observations 

- ERA5 Reanalysis 

- ERA5-Land Reanalysis 

- UERRA (Regional Reanalysis 

for Europe from 1961 to 

2019) 

- CERRA (Sub-daily Regional 

Reanalysis data for Europe 

from 1984 to the present) 

- C3S Seasonal forecast data 

- EURO-CORDEX data 

CDS API Python client 

(cdsapi) [3] 

GRIB 

NetCDF 

CMCC DDS - E-OBS Gridded Observations 

- ERA5 Reanalysis 

- ERA5-Land Reanalysis 

- EURO-CORDEX data 

- VHR-REA_IT Dataset 

- ITALY8km-CM data 

- VHR-PRO_IT Dataset 

DDS Python client (ddsapi) 

[4] 

NetCDF 
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HIGHLANDER - IOT animal sensor data 

- VHR-REA_IT Dataset 

- VHR-PRO_IT Dataset 

Python package Requests 

(requests) [5] 

NetCDF 

Copernicus Open 

Access Hub 
- Sentinel-1 

- Sentinel-2 

Python package Requests 

(requests) 

NetCDF 

MISTRAL - COSMO-2I: COSMO at 2.2km 

– Italy area  

- COSMO-5M: COSMO at 5km 

– Mediterranean Region  

- Multimodel ensemble 

forecast by Arpa Piemonte  

- Surface Rainfall Intensity 

from Radar-DPC  

- Italy Flash Flood 

Python library S3Fs (s3fs) 

[6] 

GRIB 

WEkEO - ERA5 Reanalysis 

- ERA5-Land Reanalysis 

- UERRA (Regional Reanalysis 

for Europe from 1961 to 

2019) 

- C3S Seasonal forecast data 

- Sentinel-1 

- Sentinel-2 

- EU Digital Elevation Model 

(EU-DEM) 

HDA Python client (hda) [7] NetCDF 

IoT - AnimalTalker data 

- TT_air data 

Paho Python client (paho-

mqtt) [8] 

PostgreSQL database 

adapter (psycopg2)[9] 

Database 

recordset 

LEO Portal - Climate data 

- Precision Livestock Farming 

(PLFData) 

- Laboratory data 

- Wellness 

- Genetic data 

- Collected data 

SPARQL Python client 

(sparql-client) [10] 

JSON 

CSV 

The following subsections report the detailed specifications for the different connectors for each 

data source reported in the previous table.  
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4.1. Copernicus C3S Connector 

The C3S Climate Data Store (CDS) [11] is a one-stop shop for a trusted source of climate data, tools 

and information at the global and European levels. It includes the datasets containing weather and 

climate information reported in Table 1. 

Copernicus License allows access to datasets in an open, free, and unrestricted way. Users can easily 

retrieve data using the CDS API Python client. Once the CDS API key and client are correctly installed, 

they can be used to query datasets listed in the CDS catalog. The following code shows the syntax 

to use for the API call to request a portion of ERA5 data: 

import cdsapi 

c = cdsapi.Client() 

c.retrieve( 

    'reanalysis-era5-single-levels', 

    { 

        'product_type': 'reanalysis', 

        'format': 'netcdf', 

        'variable': '2m_temperature', 

        'year': '2023', 

        'month': '01', 

        'day': '01', 

        'time': '00:00', 

    }, 

    'download.nc') 

 

The connector can be implemented as a Python module using the CDS API Client python library to 

perform the request and uses the Data storage to cache the result. 

4.2. CMCC DDS Connector 

The CMCC Data Delivery System (DDS) [12] provides a unique, consistent and seamless access point 

for all data produced and used by CMCC through a unified API interface. 

The user can browse the Catalog and the available datasets of seasonal forecasts, decadal 

predictions, climate change projections and much more through the DDS Web Portal.  

Through the DDS Web User Interface, users can browse the Catalog and the available datasets (e.g., 

seasonal forecasts, decadal predictions, climate change projections, and others). They can quickly 

build queries by choosing the values to assign to the dataset parameters. Then, according to these 

criteria, users can access and download data using the DDS Python client. The syntax to use for the 

API call is similar to this: 

 

import ddsapi 
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c = ddsapi.Client() 

c.retrieve("e-obs", "ensemble-mean", 

{ 

    "variable": [ 

        "mean_air_temperature" 

    ], 

    "time": { 

        "year": [ 

            "2021" 

        ], 

        "month": [ 

            "1" 

        ], 

        "day": [ 

            "1" 

        ] 

    }, 

    "version": "v25.0e", 

    "format": "netcdf", 

    "resolution": "0.1" 

}, 

"e-obs-ensemble-mean.nc") 

The connector can be implemented as a Python module using the DDS API Client python library to 

perform the request and uses the Data storage to cache the result. 

4.3. Highlander Connector 

Highlander aims to build a comprehensive and multi-sector framework for land-management 

decision-making in Italy. It implements a framework of multi-thematic data, indicators, and tools 

based on diverse approaches, from remote and in-situ monitoring to analytical tools, numerical 

models, and machine learning algorithms, to be directly exploited by a wide range of users through 

dedicated services.  

The component that makes those results accessible is the Data Delivery System (DDS) which exposes 

the collected datasets through a restful API. 

Here are the definitions of the APIs currently implemented and available for “data extraction”: 

Method  Path  Description  

GET  api/datasets  Get all configured datasets  

GET  api/datasets/{dataset_id}  Get a dataset by ID  
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GET  api/datasets/{dataset_id}/image  Get the dataset image 

thumbnail  

GET  api/datasets/{dataset_id}/products/{product_id}  Get a dataset product by ID  

POST  api/requests/{dataset_id}  Submit a data extraction 

request for a dataset  

GET  api/requests  Get all user requests  

GET  api/download/{timestamp}  Download result data  

 

A request example for the POST in the table above can be:  

{  

   "product":"VHR-REA_IT_1989_2020_hourly",  

   "variables":[  

   "specific_humidity",  

   "lwe_thickness_of_moisture_content_of_soil_layer"  

   ],  

  "time": {  

   "day": ["1", "2"],  

   "month": ["1"],  

   "year": ["1991"],  

  },  

   "format":"netcdf"  

}  

 

Those APIs can be accessed through a web portal upon user registration and can also be exploited 

from a command line tool using the HL-DDS client. 

Users can create a data query by giving the dataset name and the request body as a JSON file and 

then submit the request as follows: 

$ hld-dds-cli post DATASET_ID QUERY_FILE 



 

12 
  

The results can be downloaded from successful queries by providing the Request ID: 

$ hld-dds-cli get REQUEST_ID 

The connector to the HIGHLANDER data source will be a Python module using the package Requests 

to communicate with the restful API available for “data extraction” listed above. Once the request 

is completed, the connector will use the data storage to cache the result. 

4.4. Copernicus Open Access Hub Connector 

The Copernicus Open Access Hub [13] provides complete, free and open access to Sentinel-1 and 

Sentinel-2 user products. 

The OData interface is a data access protocol built on core protocols like HTTP and methodologies 

like REST that common web browsers, download-managers or computer programs such as cURL or 

Wget can handle. The data access mechanism consists of building URI for performing search queries 

and product downloads. Full authentication is required to access the API. 

The OData URI addressing the resource /Products provides the list of entries of the individual entity 

/Products('Id') corresponding to the data files stored in the Data Hub archive.  

To download a full product, the syntax is like this: 

https://scihub.copernicus.eu/dhus/odata/v1/Products('ed5a5a5e-bee2-4ae7-bdb9-

1d52849f1a7a')/$value 

The connector module will use the Python package Requests to communicate with OData API as it 

allows sending HTTP/1.1 requests extremely easy. After getting the result, it will be cached in the 

Data Storage. 

4.5. MISTRAL Connector 

The MISTRAL portal aims to facilitate and foster the re-use of the datasets by the weather 

community and its cross-area communities to provide added value services through HPC resources, 

turning them into the level of new business opportunities. 

The main Meteo-Hub service allows you to create and download your own collection of 

meteorological data chosen from different forecast models and measurements from a multitude of 

weather stations with different parameters and time validity ranges. 

There are different ways to download data from Meteo-Hub service. 

Registered users can obtain data from one or more datasets using the “Data Extraction” feature 

through the Web Portal. In the first step, the user must select one or more datasets (multiple 

selections are allowed only with datasets of the same category: observation, forecast, radar). In the 

second step, the user can filter against the available parameters specific to the dataset category. If 

the user can use post-processing tools, they can be applied in the third step. The set of post-

processing tools is specific to the dataset category, too. Some include “time post-processing”, 

https://scihub.copernicus.eu/dhus/odata/v1/Products('ed5a5a5e-bee2-4ae7-bdb9-1d52849f1a7a')/$value
https://scihub.copernicus.eu/dhus/odata/v1/Products('ed5a5a5e-bee2-4ae7-bdb9-1d52849f1a7a')/$value
https://meteohub.mistralportal.it/app/data/datasets
https://meteohub.mistralportal.it/app/data/datasets
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“space post-processing” and format conversion. Open data packages can be downloaded for all 

users, even those not logged in. The packages are produced daily and are available on the Meteo-

Hub main page. 

The open data from the observational datasets can be downloaded from the map of Observations 

webpage. 

Another way to access data is through a client application that allows users to perform the main 

operations on the Meteo-Hub platform from the command line. The application lets users download 

data extracted by an immediate or scheduled request prepared interactively on the Meteo-Hub web 

interface. It also provides a wait-and-download functionality for users accessing an AMQP data-

ready queue. 

Finally, users can directly use Meteo-Hub APIs to create and schedule data extraction requests and 

download the output data. The APIs are documented using Swagger and are accessible at this the 

following url: 

https://meteohub.mistralportal.it:7777 

In order to create a request for data extraction, the following API has to be used:   

POST https://meteohub.mistralportal.it/api/data   

The request model:  

{  

  "request_name": name-of-the-request,  

  "reftime": {  

     "from": "2022-01-10T11:04:54.615Z",  

     "to": "2022-01-10T11:04:54.615Z"  

  },  

  "dataset_names": [ … ],  

   "filters": {  

      "area": [],  

      "level": [],  

      "origin": [],  

      "proddef": [ ],  

      "product": [],  

      "quantity": [],  

      "run": [],  

      "task": [],  

https://meteohub.mistralportal.it/app/datasets.
https://meteohub.mistralportal.it/app/datasets.
https://meteohub.mistralportal.it/app/maps/observations
https://meteohub.mistralportal.it/app/maps/observations
https://meteohub.mistralportal.it:7777/
https://meteohub.mistralportal.it/api/data
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      "timerange": [],  

       "network": []  

     },  

     "postprocessors": [ … ] 

} 

In the request body, the metadata related to the desired data has to be specified, and the filters 

are specific to the dataset category. If the data extraction was successful, the fileoutput parameter 

in the response indicates the name of the output file. 

To download the output data the following API has to be used:  

GET https://meteohub.mistralportal.it/api/data/{filename}   

where the query parameter filename specifies the file to download.  

In case of the SEBASTIEN's services, the ideal solution is to exploit the data extraction request 

scheduling feature available on the MISTRAL portal. The output files of the scheduled query will be 

automatically produced on the MISTRAL portal according to the SEBASTIEN services requirements. 

Using a custom ingestion process to download the output files from the MISTRAL portal, 

SEBASTIEN will be able to mirror the data into the MinIO Data Storage component. 

The MISTRAL Connector will be developed by extending the HIGHLANDER drivers already 

implemented for netCDF files stored on POSIX-compliant file system to support S3 backend 

storage such as MinIO; those drivers will be based on the Python library S3Fs. 

4.6. WEkEO Connector 

The WEkEO DIAS [14] provides users with a single distributed tool for accessing, visualizing and 

analyzing all Copernicus data and services, including big-data analysis tools, to develop applications 

tailored to their specific needs. 

WEkEO's strength is based on its federated infrastructure built on the existing Copernicus 

organization in EUMETSAT, ECMWF, Mercator Ocean International and EEA centres. This approach 

gives users direct access to work with the most up-to-date Copernicus data instead of relying on 

archive data sets. 

The Harmonized Data Access (HDA) protocol allows the user to access the data. It can be used 

through the API available on the WEkEO portal (web interface), or directly from a virtual machine 

https://meteohub.mistralportal.it/api/data/%7Bfilename
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or a Jupyter Notebook using python scripts. The simple way is to use the HDA Python client library, 

which abstracts away the API’s details. 

Once the library and the configuration file are installed properly, the user can run a Python script to 

query and download data, as in the following code: 

from hda import Client 

c = Client(debug=True) 

query = { 

  "datasetId": "EO:ESA:DAT:SENTINEL-3:OL_2_LFR___", 

  "boundingBoxValues": [ 

    { 

      "name": "bbox", 

      "bbox": [ 

        -7.499583333333334, 

        42.3020216796485, 

        11.999333333333333, 

        54.75429195536845 

      ] 

    } 

  ], 

  "dateRangeSelectValues": [ 

    { 

      "name": "position", 

      "start": "2021-01-01T00:00:00.000Z", 

      "end": "2021-01-15T00:00:00.000Z" 

    } 

  ], 

  "stringChoiceValues": [ 

    { 

      "name": "productType", 

      "value": "LFR" 

    }, 

    { 

      "name": "processingLevel", 

      "value": "LEVEL2" 

    } 

  ] 

} 

matches = c.search(query) 

matches.download() 

The connector can be implemented as a Python module using the HDA Python Client library to 

perform the request and uses the Data storage to cache the result. 
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4.7. IoT System Connector 

Deep and continuous phenotyping of animals, using IoT (Internet of Things) sensors, is important to 

evaluate animal welfare and avoid stress conditions. At the same time, sensors can be used to send 

real-time warnings based on animal and environmental conditions. In particular, as described in 

Deliverable D2.2, data will be collected from two device types. The AnimalTalker is a device for 

animal welfare and collects data on movements of the neck and leg, animal position, animal 

temperature and environmental (air) temperature and relative humidity. The measurement of the 

heartbeat will be added during the project. The parameters are collected by multiple sensors 

installed on different parts of the animal body.  

On the other hand, TTair is an air quality monitoring device that can analyze gas concentrations in 

barns or open air. In particular, it collects the concentration of CH4, CO2, H2S NH3, Particular Matter 

(1, 2.5 and 10), air temperature and relative humidity. The devices data are published on a Message 

Queuing Telemetry Transport (MQTT) broker located on the UNITUS server as json formatted 

message.  

The arguments of each AnimalTalker json packet are timestamp, group uuid, sensor uuid, sensor 

type and measures. A single group can have multiple sensors of various types. The type of the sensor 

defines the data contained in the measures field. The “timestamp” is provided in Unix time format 

which is the number of seconds since 00:00:00 UTC on 1 January 1970.  

  

Example of AnimalTalker payload (single value): 

'{ 

"timestamp":1600000000, 

“animal_id”:00000001, 

“sensor_uuid”:00000001, 

“sensor_type”: “temperature”, 

"measures":{ “value”:10.25 } 

}' 

 

Example of AnimalTalker payload (multiple values): 

'{          

"timestamp":1600000000, 

“animal_id”:00000001, 

“sensor_uuid”:00000001, 

“sensor_type”: “accelerometer”, 

"measures":{“accelerationX”:0, “accelerationY”:0, “accelerationZ”:4095, 

“stdevX”:50, “stdevY”:10, “stdevZ”:30} 
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}' 

 

TTair Json packet arguments are device id, timestamp, measurement id and the values collected by 

the device. The timestamp format is Unix time. 

 

Example of TTAir payload: 

'{ 

“device_id”:00000001, 

"timestamp":1600000000, 

“n_misura”: 3, 

“CH4”: 800.52, 

“CO2”: 1200.78, 

“H2S”: 500.49, 

“NH3”: 750.22, 

“PM1”:500.78, 

“PM2.5”:600.12, 

“PM10”:1050.41, 

“T”:30.15, 

“H”:60.25, 

“battery”:12538 

}' 

The MQTT broker has a topic associated to each device type: 

1.   AnimalTalker 

2.   TT_air 

This solution avoids complicating the broker structure because, given the device type, all the other 

information can be retrieved from data packets. 

In order to allow the connection to the IoT data, it is expected to use the MQTT endpoint provided 

by the system and to ingest data into a TimescaleDB. This component will be integrated into the 

SEBASTIEN data lake API to expose real-time data. 

This is a simple MQTT client example that performs the subscribing to a topic and then the data 

ingestion into TimescaleDB: 

import paho.mqtt.client as mqtt 

import psycopg2 

 

CONNECTION = "postgres://username:password@host:port/dbname" 
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SQL = "INSERT INTO data (timestamp, animal_id, sensor_uuid, sensor_type, value) 

VALUES (%s, %s, %s, %s, %s);" 

 

def write_data(data): 

    try: 

       conn = psycopg2.connect(CONNECTION) 

       cur = conn.cursor() 

       cur.execute(SQL, data) 

    except (Exception, psycopg2.Error) as error: 

        print(error.pgerror) 

    conn.commit() 

    cur.close() 

 

def on_connect(client, userdata, flags, rc): 

   # This will be called once the client connects 

   print(f"Connected with result code {rc}") 

   client.subscribe("TT_air") 

 

def on_message(client, userdata, msg): 

   print(f"Message received [{msg.topic}]: {msg.payload}") 

   write_data(msg.payload) 

 

client = mqtt.Client("mqtt-IoT-data") # client ID  

client.on_connect = on_connect 

client.on_message = on_message 

client.username_pw_set("username", "password") 

client.connect(url, port) 

client.loop_forever() 

The connector can be implemented as a Python module that allows access to data ingested in the 

TimescaleDB through the PostgreSQL database Python adapter psycopg2. 

4.8. LEO Portal Connector 

The LEO (Livestock Environment Opendata) Portal [15] collects all the livestock-related information 

in Italy in a single and open-access database. Its main aim is to support and improve the quality of 

this sector, reducing, at the same time, the impact on animal wellness and the environment.  

The Portal offers the possibility of querying and retrieving data using a SPARQL Endpoint, which is a 

Point of Presence on an HTTP network capable of receiving and processing SPARQL Protocol 

requests. The SPARQL Query Language is a Declarative Query Language (like SQL) for performing 

Data Manipulation and Data Definition operations. 

The following code is an example of a query that retrieves the number of farms and slaughterhouses 

for each province: 

SELECT ?uriProvincia ?nomeProvincia ?siglaProvincia ?codiceIstatProvincia 

?numAziende (count(?macello) as ?numMacelli)  

WHERE { 

    { 
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        SELECT ?uriProvincia ?nomeProvincia ?siglaProvincia ?codiceIstatProvincia 

(count(?azienda) as ?numAziende) 

        WHERE { 

            ?uriProvincia l0:name ?nomeProvincia ; 

            clv:acronym ?siglaProvincia ; 

            skos:notation  ?codiceIstatProvincia . 

            OPTIONAL { 

                ?azienda a co:LivestockFarm ; 

                co:operatesIn ?uriProvincia . 

            } 

        } 

    } 

    OPTIONAL { 

        ?macello a co:Slaughterhouse ; 

        co:operatesIn ?uriProvincia . 

    } 

} 

ORDER BY ASC(?nomeProvincia) 

The connector will be based on the SPARQL Python Client (sparql-client) since it is able to 

perform SELECT and ASK queries against a SPARQL endpoint via HTTP. Once the connector has 

executed the request, the resulting data will be cached in the Data Storage. 

5. Backend 
The Backend main task is to receive data requests coming from the Data Access Layer and execute 

them interacting with the other components of the Data Lake.  

The retrieval process for accessing the data requested can be implemented both as an asynchronous 

and synchronous process. To describe how the different components communicate with each other, 

starting from the user request until the data is provided, a Unified Modeling Language (UML) 

Sequence diagram is provided for both types of process. 
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Figure 2: Sequence Diagram for retrieving data from the Data Lake using the asynchronous mode 

The sequence diagram related to the asynchronous process is shown in Figure 2, where the 

operations and communication of the different Data Lake components involved are reported when 

a data request from the Data Access Layer is related to an external Data Source. 

In particular, the Data Access Layer submits the request to the Backend. Then, with the request 

identifier returned, it will poll the Backend at regular intervals (e.g., every two seconds) to check the 

request’s status until it has been completed. 

To manage the request, the Backend interacts with the Catalog to obtain the information related to 

the data source and the connector for accessing the corresponding dataset. Thus, the Backend 

creates the Connector object, which will execute the query towards the datasource of the 

corresponding dataset in the request and cache the result in the Data Storage.  

Once the request is completed, the Data Access Layer receives from the Backend information 

related to the location of the cached data in the Data Storage and proceeds with the download 

from the MinIO component. 
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Figure 3: Sequence Diagram for retrieving data from the Data Lake using the synchronous mode 

Figure 3 shows the sequence diagram related to the synchronous process; this workflow occurs for 

accessing and analyzing streamed IoT real-time data stored in TimescaleDB. 

A synchronous operation implies that the Data Access Layer submits the request to the Backend and 

remains blocked until the request is completed. In processing the request, interaction occurs 

between the Backend and the Catalog to retrieve the information related to the data source and 

the connector for accessing the corresponding dataset. Thus, the Backend creates the Connector 

object, which will execute the query directly towards the Data Storage (e.g. TimescaleDB 

component), and the result is returned to the Data Access Layer.  

6. Catalog 
This paragraph describes the design and the specifications of the Catalog element within the Data 

Lake. This component aims to store information about the different data sources described in 

Section 4: connection and access mechanisms, datasets available in the data source, datasets 

metadata (such as dataset identifier within the data source and parameters to retrieve data) and 

the data source connector. 

The Catalog stores the information within a database (called MetaDB) and, through an API, exposes 

different operations that the Backend can use to retrieve information for executing the data 

requests. 

The following paragraph reports detailed specifications about the MetaDB and the Catalog 

operations. 
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6.1. MetaDB 

From the requirements analysis of the MetaDB, the involved actors that need to be represented as 

entities are: the data source and the datasets available in each data source. Furthermore, since the 

metadata schema can differ for each dataset, a NoSQL database is a good candidate for the MetaDB 

implementation. 

MongoDB [16] offers the following potential benefits among the different NoSQL solutions.  

❖ It is used for high-volume heterogeneous data storage, helping organizations store large 

amounts of data while performing rapidly.  

❖ It doesn't require predefined schemas and stores any type of data. This gives users the 

flexibility to create any number of fields in a document, making it easier to scale MongoDB 

databases compared to relational databases. 

❖ It is document-oriented, with the advantage that these objects map to native data types in 

several programming languages. Having embedded documents also reduces the need for 

database joins, which can lower costs. 

MongoDB stores data as records that are made up of collections and documents. Documents 

contain the data the user wants to store as objects in the collections; each object in MongoDB is 

similar to a JSON (JavaScript Object Notation) document composed of field/value pairs. Documents 

also include a primary key as a unique identifier (called _id) within the collection. A document's 

structure changes by adding or deleting new or existing fields.  

 

Figure 4: MetaDB Data Model 

In Figure 4, the MetaDB Data Model schema is reported using the data abstractions provided by 

MongoDB.  

The Data Source collection contains all the objects related to the data sources with the following 

schema fields: 

❖  id: unique identifier of the data source; 

❖ type: type of the data source, i.e., Data Provider (e.g., Copernicus C3S), MinIO Object 

Storage, TimescaleDB; 
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❖ uri: the uri for connecting to the data source; 

❖ credentials: a dictionary with information about the credentials for the authentication to the 

data source (e.g. username and password, api-key, and others); 

❖ connector: the Python module that the Backend can use to access and retrieve data from 

the data source. 

The Dataset collection contains all the objects related to the information for each dataset with the 

following schema fields: 

❖ id: unique identifier of the dataset; 

❖ ds_id: the reference to the data source that provides access to the dataset; (i.e., id in the 

Data Source collection schema); 

❖ ds_dataset_id: the dataset identifier in the data source; 

❖ metadata: the dictionary containing key/value pairs related to the parameters (and their 

values) that are needed to retrieve the dataset from the data sources. 

The MetaDB data model can be stored in the MongoDB database as two collections related to the 

data source and the dataset entities. Each document in the data source collection represents each 

data source described in Section 4. In contrast, the documents in the dataset collection will contain 

all the metadata information of the datasets available in the data sources.  

In order to ingest the datasets metadata in the MetaDB, two potential methods can be used for 

indexing. 

The first solution uses the data source API if it provides information about the datasets metadata. 

In the case of Wekeo, CMCC DDS, and HIGHLANDER the API provides endpoints to extract metadata 

for a particular dataset. For example, in WEkEO, it is possible to use the HDA API to get a JSON 

document of the full list of attributes for a particular dataset by using GET 

/querymetadata/{datasetId}. 

If a data source does not provide an API to access information about its own catalog, the alternative 

solution is to design and implement a customized web crawler that will search and automatically 

index and extract metadata from the data source website. 

6.2. API 

The Catalog provides an API that allows the Backend to obtain the information related to data 

sources and datasets; in particular, the following operations are provided by the Catalog: 

❖ get_datasets(id): return the list of available datasets for a specific data source identified by 

id; 

❖ get_datasource(id): return the data source related to the dataset identified by id; 

❖ get_connector(id): return the connector pertaining to the data source identified by id; 

❖ get_metadata(id): return the list of parameters for a given dataset identified by id; 
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❖ get_values(id, name): return the values of a parameter identified by name related to the 

dataset identified by id. 

The Catalog can perform those operations using the Mongo Client available in PyMongo [17]; it 

allows easy interaction between Python and MongoDB through the main query clauses, such as find 

and distinct, to retrieve information about datasets and data sources. 

7. Conclusions 
This document provides the design and specifications of the SEBASTIEN Data Lake and its extension 

with respect to the HIGHLANDER Data Platform. The main innovation in comparison with 

HIGHLANDER is the enhancement of the Catalog abstraction. This latter allows us to integrate 

multiple data sources, avoiding data duplication and facilitating the development of the SEBASTIEN 

Services and Data Portal, as it allows the usage of a uniform environment for accessing and 

processing heterogeneous datasets.  

The document describes in detail the specifications of all the architecture components that will be 

developed during the project in Activity 3. A prototype will be released based on the already 

identified technologies considered in the architecture design, allowing the access, management and 

processing of large amounts of heterogeneous data provided by different types of data sources for 

developing and delivering the SEBASTIEN Services and Data Portal. 
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