

Estimation of enteric methane emission in Italian dairy herds: application of IPCC equations using DHI data.

Riccardo Negrini Italian Breeder Association

negrini.r@aia.it

together with:

Federica Luisi, Mesfin Mekonnen Moliso , Mauro Fioretti , Alessia Tondo

Breeding for resilience: transitioning diverse livestock farming systems into the future

ICAR 2023 Carbon footprint source: the right perspective

Livestock Genetics from

.....that fortunately sometime changes

National estimation in Italy

Catalogue of the emission sources ISPRA

2019 REFINEMENT TO THE 2006 IPCC GUIDELINES FOR NATIONAL GREENHOUSE GAS INVENTORIES

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

National Total Emission (2021)

Le emissioni di gas serra in Italia alla fine del secondo periodo del Protocollo di Kyoto: obiettivi di riduzione ed efficienza energetica

		ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale	eistema Naziona per la Protezione dell'Ambient	CH4 UNFCCC BERGA AND AND AND AND AND AND AND AND AND AN
Energia - Trasporti	Energi	a - Residenzialo servizi	e e Energia - Industria manifatturiera	Energy: >78% Agricolture: 8.6% Industry: 8.1%
Energia - Industrie energetiche	IPPU - F gas	Agricoltura - Fermentazione enterica	- suoli agricoli PU - Prodotti minerali	Waste: 4.9% 59.0% Methane (CH ₄)

Methane

Estimation Hindrances

Averaged data and default settings —

Estimation relies on national surveys data or literature trials data

• Outputs by macro-clusters

- Energy
- Industrial process and product usage (IPPU)
- Agricolture
- Land Use and forestry
- Waste

Just few examples

• 5.2.2 Methodological issues

Dairy cows Tier2 (data and info related to the geographic location)

Reference

Table 5.6 Parameters for the calculation of dairy cattle emission factors from enteric fermentation

Value

Average weight (kg) CRPA, 2006[a] 602.7 600 Coefficient NE_m (lactating cows) 0.386 NRC, 2001; IPCC, 2006 0.386 CRPA, 2006[a]; ISTAT, 2003 0(**)Pasture (%) 5 Weight gain (kg dav⁻¹) CRPA, 2006[a]; CRPA, 2004[b] 0.051 0 Milk fat content (%) ISTAT, several years[a], [b], [d], [e], [h] 3.59-3.71 Hours of work per day CRPA, 2006 a 0 0 Portion of cows giving birth 0.97-0.91 AIA, several years[a] 0.9 Milk production (kg head⁻¹ day⁻¹) 11.5-22.2 CRPA, 2006[a]; OSSLATTE/ISMEA, 2003; 16.4 ISTAT, several years[a], [b], [c], [d], [e], [f], [h]; OSSLATTE, 2001 CRPA, 2006[a]; CRPA, 2005; IPCC, 2006 Digestibility of feed (%) 65 65 6.5 6.5 Methane conversion factor (%) CRPA, 2006[a]; IPCC, 2006 Energy content of methane (MJ/kg **IPCC**, 2006 methane) 55.65 55.65

(*) Data for estimating tier 1 enteric fermentation CH₄ emission factors for dairy cows (Western Europe); (**) Stall fed (feeding situation)

Italian Greenhouse Gas

ISPRA

IPCC 2006(*)

Parameter

Control of the second s

020

WNDUN /CO GN

tudo cicero - Aº, 15.74

Our mission

Foster the adoption of in-farm mitigation strategies

Provide farmers a mitigation monitoring tools easy to use

Monitoring trends regularly, assess progress toward carbon neutrality and provide robust reports and forecast

Our plan

Exploting DHI longitudinal data and other information sources (LEO open-data project) to fine tune IPCC/ISPRA CH_4 estimations (from TIER 2 to TIER 3)

Estimating methane emission «at animal and farm-level»

Turn the outcomes in functional units (e.g. milk yeld, dry matter, protein content, serving size etc)

DHI national longitudinal data

On single head/farm

1.5 milion dairy cows, 30 milion data year, 14.000 farms

Farm: More than 19.000

Traits: about 70 novel parameters in large-scale routine collection

Lab: About 90M milk lab analysis

Dataflow: more than 40M/year

LEO open database (10.25 AM May 16^{th}): more than 4×10^9 triplets (date-id-measure)

www.leo-italy.eu

ministero delle politiche agricole alimentari e forest

Including data informative for CH₄ robust estimation

Information exploited

- True and updated herd composition
- Weighted milk per cow
- Measured milk composition (including urea)
- Recorded reproductive performance per caw
- Herds feeding plan and diet composition
- Herd manure data

- Upgrade ENERGY estimations
- Refine ISPRA conversion factor

Entheric CH4

estimation

An easy to read report by farm issued monthly

iostenibilita' ambientale razza : <u>Frisona Italiana</u>

Parametri aziendali alla data CF				
Peso Vivo Medio	700			
Media EVM Latte (kg)	10.665			
Media EVM Grasso Medio (kg)	466			
Latte EVM corretto grasso al 4% (kg)	11.258			
Urea Media (mg/dl)	27			

Consistenza media del periodo				
Mandria	278,			
Vacche	236			
in lattazione	121			
in asciutta	, 15			
Manze	/ 141			
Tori	0			
Torelli	0			

Produzione media de	el periodo
Produzione media a capo (kg/giorno) 💦 👘	30,5
Numero medio parti per vacca 🛛 🧪	0,8503
Stime	EDMA)
Azoto	87,9071
Fosfato	40,3740
Fosforo 🥜	17,6306
Valori Medi per kg Latte prodotto	
Azoto 🗸 🧹	0,0078
Fosfino	0,0016

Stima Metano enterico per categoria (kg Anno)		A capo/giorno	A kg latte/giorno
Mandria	30.284,7700	0,2974	0,0225
Vacche	22.067,5342	0,4434	
In lattazione	21.208,5049	0,4801	0,0157
In asciutta	859,0292	0,1536	0,0006
Manze	8.179,1899	0,1580	
Tori	0,0000	0,0000	
Torelli	38,0459	0,1247	

The report is already delivered monthly to the farmer trough our software and app for free

- Extend, consolidate and simplify feeding data recording (portable NIR)
- Integrate methane direct measures (portable Sniffer)
- o Develop indexes, produce trends, set up tresholds
- Exploit scientific research and EU running prejects outcomes
- o Improve the report with other information (e.g N escretion, estimation by FU etc)
- Disseminate to farmers (including advises on effective mitigation strategies)

The main goal of the **project SEBASTIEN** is to deliver a **Decision Support System (DSS)** for a more efficient and (economically and environmentally) **sustainable management**, and consequent valuing, of the livestock sector in Italy and in particular cattle, sheep and goat breeding.

www.sebastien-project.eu/

The Project

SEBASTIEN wishes to implement large-scale ICTbased services to support smart livestock farming and management, while reducing risks and

Thanks for your attention

Livestock Environment Opendata

CA

